AGR-5/6/7 Final Fuel Characterization

Douglas W. Marshall

May 2018

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

AGR-5/6/7 Final Fuel Characterization

Douglas W. Marshall

May 2018

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy

Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

AGR-5/6/7 'Final' Fuel Characterization

Douglas Marshall TRISO Fuel Fabrication Technical Lead

Gas-Cooled Reactor Program Review Meeting May 8, 2018, at Idaho National Laboratory

Contents

- Historical Overview of AGR-5/6/7 Fuel Fabrication
 - Kernel Lot
 - TRISO Particle Lot
 - Compacts Batches
- Kernel Lot Characterization
- TRISO Particle Lot Characterization
- Compact Characterization with Confirmatory Analyses
 - 25% PF Compacts
 - 40% PF Compacts and Overcoated TRISO
- Summary

Historical Overview – Kernels

- Formed and sintered in production-scale equipment since AGR-1
- Internal gelation sol-gel process is used
 - Chilled uranyl nitrate broth with HMTA, urea, and carbon black dribbled into a column of warm TCE
 - Gels are "aged," washed, dried in a collection pot
 - Dried (or "green") gels are calcined and sintered in a spouted bed furnace
- Stochastic fissuring potential
- J52L-16-69316 (2013) was too fissured for use
- J52R-16-69317 (2016) had far fewer fissures

Historical Overview – Kernels (cont.)

 Composited from 6 kernel sintering batches; yielding 17 kg of certified kernels in J52R-16-69317

Historical Overview – TRISO

- Tristructural isotropic (TRISO) fuel particles coated in a spouted bed furnace retort
- AGR-1 and AGR-3/4 coating applied at ORNL in a 2" diameter retort
- AGR-2 and AGR-5/6/7 coated in a small, productionscale (6" diameter) retort
- Four coatings applied in a semi-continuous operation
 - Buffer
 - Inner pyrocarbon
 - Silicon carbide
 - Outer pyrocarbon
- TRISO particle lot J52R-16-98005 was certified for AGR-5/6/7 in May, 2017

Historical Overview – TRISO (cont.)

• Four TRISO batches were composited, after two sieving operations to reject fractured kernels, into a 11.1 kg TRISO particle lot J52R-16-98005

Historical Overview – Compacts

Particle Overcoater

- TRISO particles are overcoated with a resin-infused graphite powder and pressed into cylindrical fuel "compacts"
- AGR-1, AGR-2, and AGR-3/4 fuels formed in laboratoryscale equipment
 - Small tilted drum overcoater
 - Pressed one at a time with weighed charges
 - Two furnaces for carbonization and thermal treatment
- AGR-5/6/7 fuel formed in engineering-scale equipment
 - 1-2 kg of TRISO overcoated in an hour in pharmaceutical equipment
 - 4-hole automated press
 - Single furnace for carbonization and thermal treatment

Kernel Lot Characterization

J52R-16-69317	Specification	Mean	Status*
Diameter (μm)	425 ± 10	425.8	Pass
Envelope density (g/cm³)	≥10.4	11.05	Pass
Uranium fraction (gU/gUCO)	≥0.885	0.897	Pass
²³⁵ U enrichment (g ²³⁵ U/gU)	0.155 ± 0.001	0.1548	Pass
C:U (atomic ratio)	0.40 ± 0.10	0.37	Pass
O:U (atomic ratio)	1.50 ± 0.20	1.441	Pass
(C+O)/U (atomic ratio)	≤2.0	1.811	Pass
Individual impurities (ppmw): Li, Na, Al, Cl, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn	≤100 each	5-25	Pass
Process impurities (ppmw): P, S	≤1,500 each	(P) 5	Pass
Aspect ratio	≤ 1.05 @ .95/.90	1.012	Pass

^{*} Pass ≡ meets all specifications on the mean and dispersion critical limits.

Kernel Lot Composition and Characterization

J52L-16-69316 Analysis #3

R-16-69317 Analysis Sample #3
- Polished Cross Section of Kernels

TRISO Lot Composition and Characterization

J52R-16-98005	Specification	Mean	Status*
Buffer thickness (μm)	100 ± 15	100.4	Pass
IPyC thickness (μm)	40 ± 4	39.24	Pass
SiC thickness (μm)	35 ± 3	36.15	Pass
OPyC thickness (μm)	40 ± 4	35.03	Low mean
Buffer density (g/cm ³)	1.05 ± 0.10	1.031	Pass
IPyC density (g/cm ³)	1.90 ± 0.05	1.897	Pass
SiC density (g/cm ³)	≥ 3.19	3.195	Pass
OPyC density (g/cm ³)	1.90 ± 0.05	1.897	Pass

^{*} Pass ≡ meets all specifications on the mean and dispersion critical limits.

TRISO Lot Composition and Characterization

J52R-16-98005	Specification	Mean	Status*
IPyC diattenuation	≤ 0.0170	0.0153	Pass
OPyC diattenuation	≤ 0.0122	0.0102	Pass
SiC aspect ratio (faceting)	≤ 1.14 @ .95/.99	1.053	Pass
Defective IPyC coating fraction	≤ 1.0 × 10 ⁻⁴	4.5E-5	Pass
Defective OPyC defect fraction	≤ 3.0 × 10 ⁻⁴	0/35k	Pass
Dispersed U Fraction	(≤ 1.0E-5)**	1.04E-5	High
Exposed Kernel Fraction	(≤ 5.0E-5)**	9.40E-6	Acceptable
SiC Defect Fraction	(≤ 1.0E-4)**	1.89E-5	Acceptable

^{*} Pass ≡ meets all specifications on the mean and dispersion critical limits.

^{**} Compact specification isn't relevant to TRISO particles.

 Four batches of overcoated TRISO were separately pressed and divided across four furnace runs for thermal treatment

Pressing ↓\ Furnace →	Α	В	С	D
14154 (39.4% PF)	108	108	108	140
14155 (39.3% PF)	108	108	108	160
14156 (26.1% PF)	108	108	108	36
14157 (25.9% PF)	108	108	108	0

- A-series compacts were used in AGR-5/6/7 while the C and D-series were used for destructive characterization
- Pressure sensor failure interrupted furnace run B between carbonization and heat-treatment cycles. The
 other three runs used a continuous or "combined" cycle from carbonization through thermal treatment

Property	Specification	14154A	14155A	14156A	14157A
Mean U loading					
(gU/compact)					
Nominally 40% PF	1.36 ± 0.10	1.428	1.388		
Nominally 25% PF	0.90 ± 0.08			0.923	0.914
Diameter (mm)	12.20 ≤ D ≤ 12.44	12.293	12.291	12.237	12.260
Length (mm)	24.40 ≤ L ≤ 25.30	25.094	24.692	24.996	24.752
Matrix density (g/cm ³)	≥ 1.65	1.73	1.73	1.76	1.74

Property	Spec	14154C	14155C	14156C	14157C
Iron (μg)	≤ 25	< 5			
Transition metals (μg) Cr, Mn, Co, and Ni	≤ 50 each	Cr <25, all others <10			
Calcium (μg)	≤ 50	<25			
Aluminum	≤ 50	<25			
Titanium + Vanadium	≤ 240	<20			

BWXT-NOG Compact Characterization

40% PF Compacts

25% PF Compacts

Property	Spec	14154C and 14155C	14156C and 14157C
Defective OPyC	≤ 0.01	0/4200 (7.1E-4 @ 95%)	0/4200 (7.1E-4 @ 95%)
Dispersed U Fraction	≤ 1E-5	3.18E-5 (3.80E-5 @ 95%)	2.66E-5 (2.95E-5 @ 95%)
Exposed Kernel Fraction	≤ 5E-5	6.57E-5 (9.28E-5 @ 95%)	7.39E-6 (1.48E-5 @ 95%)
SiC Defect Fraction	≤ 1E-4	6.96E-5 (9.66E-5 @ 95%)	9.24E-5 (1.22E-4 @ 95%)

Unexpected results:

The DUF increased to 3× the TRISO lot

The SDF increased $4 \times - 5 \times$

Inconsistencies in analytical outcomes made some results suspect

- Confirmatory analysis was requested by ORNL
 - J52R-16-11034 overcoated TRISO (40% PF)
 - 40 compacts from J52R-16-14154C (40% PF) compacts
 - 29 compacts from J52R-16-14156C and 11 compacts from J52R-16-14156D (25% PF)
- ORNL observed unusual analytical results
- Deconsolidate is a thick slurry and difficult to clarify the supernate
- The populations analyzed by ORNL are insufficient to reject any data
- Additional analyses are needed to improve statistics

Summary

Kernels

- 17 kg of LEUCO kernels were certified
- All product specifications were met
- Fissure fraction is comparable to AGR-2 UCO fuel

TRISO Particles

- 11.1 kg of LEUCO TRISO particles were certified
- All product specifications were met except for OPyC thickness
- Mean DUF was high, but EKF and SDF were ~1/5th of the compact specification

Fuel Compacts

- Fuel compacts of both packing fractions meet all specifications except for DLBL defects
 - DUF is above the specification for both PFs
 - EKF for 25% PF compacts meet specification
 - EKF for 40% PF compacts fail the specification; mostly from damage in the overcoater
 - SDF for both PFs should meet specs with more data
- ORNL should be tasked to analyze more samples of all compact batches

Douglas Marshall

TRISO Fuel Fabrication Technical Lead

Douglas.Marshall@inl.gov

(208) 526-3657

ART.INL.gov

